System requirement:
- Windows XP or above
- Windows media player 10.0 version or above

Accompanying photo CD ROM is playable only in Computer and not in CD player.

Kindly wait for few seconds for photo CD to autorun. If it does not autorun then do the following:
- Click on my computer
- Click the CD drive labelled JAYPEE and after opening the Drive, kindly double click the file Jaypee
Jaypee Gold Standard Mini Atlas Series

Emergency Imaging

D Karthikeyan DMRD DNB
Consultant Radiologist
Bharat Heart Scans
Chennai

Deepa Chegu DMRD
Consultant Radiologist
Bharat Scans
Chennai

JAYPEE BROTHERS
MEDICAL PUBLISHERS (P) LTD
New Delhi
Contrast-enhanced spiral CT and high field MRI has revolutionized the work-up and diagnosis of the trauma and emergency patient. State-of-the-art CT and MRI technology with multislice capabilities allows for rapid breath-hold scanning, permitting greater coverage with greater spatial detail. CT may be performed in hemodynamically stable patients in whom injury is suspected in much less time than in the recent past with greater accuracy and diagnostic confidence.

These capabilities have led to a dramatic decrease in surgical exploration for often minor injuries, improved triage by presenting the total spectrum of injuries, permitted recognition of clinically unanticipated injuries, and fostered earlier discharge of patients without significant injury with a high level of confidence. These influences have, in turn, led to decrease in costs of patient management and, most likely, improved overall clinical outcomes.

It is our hope that this new mini series in a pictorial review format will help the postgraduate students and emergency room physicians.

D Karthikeyan
Deepa Chegu
Contents

1. Traumatic Brain Injuries ---------------------------------- 1
2. Non-traumatic Brain Emergencies ------------------------ 16
3. Traumatic Chest Injuries ------------------------------- 34
4. Non-traumatic Chest Emergencies ----------------------- 46
5. Non-traumatic Abdominal Emergencies ------------------- 55
6. Traumatic Abdominal Emergencies ---------------------- 93
7. Musculoskeletal Trauma -------------------------------- 98
8. CT Angiography -- 162

Appendix --- 185

Index -- 221
1. Traumatic Brain Injuries

TRAUMATIC BRAIN INJURIES
Closed head injury
Penetrating head injury
Compressive head injury
Concussion
Epidural hematoma
Subdural hematoma
Subdural hygroma
Contusion
Coup and contrecoup
Laceration
Diffuse axonal injury
Hypoxia
Edema
Transtentorial herniation
Cerebellar herniation
Post-traumatic epilepsy
Emergency Imaging

<table>
<thead>
<tr>
<th>Contact injuries</th>
<th>Acceleration injuries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull deformation injuries, local</td>
<td>Surface strain</td>
</tr>
<tr>
<td>i. Skull fracture, linear or depressed</td>
<td>i. Subdural hematoma</td>
</tr>
<tr>
<td>ii. Extradural hematoma</td>
<td>ii. Contrecoup contusion</td>
</tr>
<tr>
<td>iii. Coup contusions</td>
<td>iii. Intermediate coup contusion</td>
</tr>
<tr>
<td>Remote</td>
<td>Deep strain</td>
</tr>
<tr>
<td>Vault and basal skull fractures</td>
<td>Concussive syndromes</td>
</tr>
<tr>
<td></td>
<td>Diffuse axonal injury.</td>
</tr>
<tr>
<td>Shock wave injuries</td>
<td></td>
</tr>
<tr>
<td>Contrecoup contusion</td>
<td></td>
</tr>
<tr>
<td>ICH</td>
<td></td>
</tr>
</tbody>
</table>

Open Trauma
- Pneumatocoele
- Depressed fracture
- Retained bullet (and hematoma)
- Transcranial hemiation (with edema)
- Cerebral atrophy

Closed Trauma
- Edema
- Hemorrhagic contusion
- EDH
- SDH
- Late damage
- Communicating hydrocephalus
- Porencephalic cyst
- Spongiform encephalopathy
Axial NECT shows a right frontal convex extra axial lesion showing rim of hyperdensity (thin arrow) with a large iso dense component (short arrow) suggesting hyperacute on going bleed. Note the cortical buckling.
Emergency Imaging

Axial NECT showing an acute left parietal EDH.
Axial CECT shows a right frontoparietal concave mixed dense extra axial collection (thin arrow) causing cortical buckling and mid line shift, note the displaced ventricles with subfalcine herniation (thick arrow). Layering of the collection is classical finding of chronicity.
ACUTE SDH

Axial NECT showing left frontoparietal concave hyperdense collection (thick arrow) with midline shift and subfalcine herniation (thin arrow).
Axial NECT showing right frontal hemorrhagic contusion, note the mixture of high and low attenuation lesions (arrow).
Figure A axial NECT showing a focal high attenuation in the region of body of callosum (arrow). Figure B sag t2 W MRI showing a focal high signal intensity in the genu of callosum.
Figure A axial NECT showing punctuate bleed in the left cerebral peduncle along with interpeduncular SAH (arrows). Axial t2 W MRI showing high signal intensity in the left peduncle (arrow).

Classification of DAI

Stage I: Involves the parasagittal regions of the frontal lobes, periventricular temporal lobes and less likely the parietal and occipital lobes, internal and external capsules, and cerebellum.

Stage II: Involvement of the corpus callosum, in addition to the white matter areas in stage I.

Stage III: Involves the areas associated with stage II, with the addition of brainstem involvement.
Emergency Imaging

PNEUMOCEPHALUS

Axial NECT showing multiple air pockets in the parenchyma, intraventricular region and in the frontal subdural space (arrows).
Traumatic Brain Injuries

POST-TRAUMATIC INFARCT

Axial NECT in a patient who had sustained a motor vehicle accident showing right hemispherical infarct (arrow). Post-traumatic infarcts occur either due to spontaneous ICA dissection or thrombosis due to shearing injury.
Emergency Imaging

Axial t1W MRI shows loss of normal left ICA flow void (arrow) case of post-traumatic occlusion.
Axial NECT in bone window showing a left frontal comminuted depressed fracture (arrow).
Emergency Imaging

REVERSAL SIGN – SIGN OF HYPOXIA

Axial CECT shows diffuse hypodensity of the supratentorial cerebral hemisphere with cerebellum showing normal attenuation (arrows).
CAROTICOCAVERNOUS FISTULA

Axial CECT shows left orbital proptosis with distended left cavernous sinus and dilated superior ophthalmic vein (arrow).

Usually caused by trauma or spontaneous rupture of the cavernous ICA. Routes of drainage will include superior ophthalmic vein, petrosal sinus, cortical veins, contralateral sinus.
ANEURYSM

Axial CECT showing a left middle cerebral artery aneurysm with bleed (arrow).
Non-traumatic Brain Emergencies

AVM

3d MIP reconstruction showing a large posterior fossa AVM with feeders from PCA draining into the left transverse sinus (arrow).
Emergency Imaging

INTRACEREBRAL BLEED

Potential mechanisms and factors associated with intracerebral hemorrhages.

- Amyloid angiopathy
- Arterial hypertension
- Arterio-venous malformation
- Arterial aneurysm (congenital or mycotic)
- Cerebral vasculitis
- Cerebral venous infarction
- Cocaine
- Coagulopathy
- Hemorrhagic conversion of ischemic stroke
- Secondary hemorrhage into primary or secondary brain neoplasm
- Stimulant drugs
Axial NECT showing a left gangliocapsular acute hematoma.
Axial NECT showing acute vermian bleed (Fig. A) with intraventricular extension causing obstructive hydrocephalus (Fig. B).
Axial NECT showing acute left corona bleed with intraventricular extension (arrow).
Emergency Imaging

Axial NECT showing left posterior parietal low hematocrit hematoma, note the fluid fluid level which is seen classically in these bleeds which are seen in patients with renal failure or coagulation derangement.

- Acute (0-2 days) — hyperdense
- Subacute (3-14 days) — isodense
- Chronic (>14 days) — hypodense
CEREBRAL VENOUS SINUS THROMBOSIS

Axial CECT showing bilateral subcortical bleeds in the frontoparietal regions (arrow, Fig. A). Figure B shows the nonenhancing superior sagittal sinus suggestive of thrombosis (arrow).
STRAIGHT SINUS THROMBOSIS

Axial NECT showing hyperdense straight sinus due to thrombosis (arrow) causing bithalamic infarcts.
Non-traumatic Brain Emergencies

ABSCESS

Axial CECT showing right temporal conglomerate low dense lesion showing smooth enhancing capsule in a boy with cyanotic heart disease classical findings of a pyogenic abscess.
Axial CECT showing a hyperdense lesion in the left foramen of monro causing obstructive hydrocephalus. Patients present with headache and giddiness.
Non-traumatic Brain Emergencies

MEDULLOBLASTOMA

Axial CECT showing a variegated posterior fossa mass with obstructive hydrocephalus. Patient presents with features of raised ICT.
Axial CECT showing bilateral posterior parietal hypodensity in a young girl with hypertension due to acute nephritis. This is caused due to break down of the blood-brain barrier with transudation of fluid due to transient loss of auto-regulatory mechanisms.
Axial NECT showing hyperdense left MCA due to acute thrombus (arrow). Note the adjacent insular hypodensity due to acute infarct.
Axial NE and CECT taken over a period of 8 days shows the transition of a left MCA infarct from an acute to subacute pattern with hemorrhagic transformation of the left lentiform nucleus.
Non-traumatic Brain Emergencies

LEFT MCA PROXIMAL OCCLUSION

3D MIP cerebral angiogram shows proximal left MCA m1, m2 segment occlusion.
Emergency Imaging

BASILAR ARTERY OCCLUSION

MR 3D TOF angiogram shows absent flow in the basilar artery. Figure B shows source images which confirm lack of flow in the distal basilar artery (arrow).
DURETS HEMORRHAGE

Axial NECT showing linear hyperdensities in the pons caused due rupture of the pontine perforator vessels due to downward herniation.
3. Traumatic Chest Injuries

Require Immediate Intervention

- Tension pneumothorax
- Open pneumothorax
- Disruption of major airway
- Cardiac tamponade
- Massive hemothorax
- Traumatic air embolism
- Flail chest

Injuries with Potential for Threatening Survival

- Lung contusion
- Other pulmonary parenchymal injuries
- Myocardial contusion
- Aortic rupture
- Esophageal disruption
- Diaphragmatic rupture
- Rib fractures
Traumatic Chest Injuries

- Simple hemopneumothorax
- Traumatic asphyxia

Long-term Sequelae

- Clotted hemothorax
- Empyema
- Phrenic nerve palsy
- Pericardial complications
- Fistulae
- Diaphragmatic hernia
- Chylothorax

Others

- Sternal, clavicular, scapular injuries
- Subcutaneous emphysema
Emergency Imaging

PNEUMOTHORAX

Accumulation of air in the pleural space.
Common causes are blunt/penetrating trauma, iatrogenic and spontaneous (underlying lung diseases).
There are 3 types:
Type 1—closed, intact thoracic cage
Type 2—open, sucking chest wound
Type 3—tension, free ingress with little egress
Digital scanogram and axial CT showing collapsed right lung (thin arrow) due to gross pneumothorax. Note the subcutaneous emphysema (short arrow).
PNEUMOTHORAX WITH PULMONARY CONTUSION

Digital scanogram and axial CT showing rim of left pneumothorax (thin arrow) with pulmonary parenchymal alveolar opacities suggestive of contusion.
Axial NECT showing right pneumothorax, right subcutaneous emphysema and air within the mediastinal fat planes (arrow).
LUNG CONTUSION

Axial NECT showing right upper lobe posterior and lower lobe superior segment parenchymal consolidation with alveolar opacity typical of contusion in the acute setting. Contusions appear as nonsegmental coarse illdefined amorphous opacities usually located posteriorly overlying the rib fractures. Classically seen as nonsegmental pulmonary infiltrates—occur within 12-24 hours of injury.
Axial NECT showing left lower lobe peripheral laceration (arrow Fig. A), Figure B shows bilateral lower lobe contusion with right laceration seen as an oval lucency.

Post-traumatic cysts, pseudocysts, or pneumatoceles are cavitary lesions within the lung parenchyma filled with fluid, blood, or laceration.

Pulmonary laceration is defined as air filled lucencies surrounded by lung parenchyma as seen on CT. Pulmonary lacerations are classified into 4 types based on CT parameters—
Type 1—intraparenchymal air filled cavity
Type 2—air filled cavity in the paravertebral parenchyma
Type 3—linear lucency seen adjacent to a fractured rib
Type 4—pleuro-pulmonary adhesion.
Axial NECT showing bilateral multifocal consolidations in a patient who had sustained left femur and right foot fractures.
Diaphragmatic Injury

Digital scanogram and axial CT in mediastinal and lung window showing transthoracic herniation of the stomach due to diaphragmatic tear. Note the high placed stomach in Figure A, Figure B shows the oral contrast injected via the Ryle’s tube reaching the stomach.
Emergency Imaging

INJURY TO AORTA

Deceleration forces can cause marked shearing stresses particularly where a structure changes from being relatively fixed to relatively unsupported, such a zone occurs in the aortic isthmus in the region of attachment of ligament arteriosum. Ninety-five percent of the aortic injuries are encountered at the aortic isthmus level.
Axial CECT with sagittal and 3d SSD reformation shows a saccular aneurysm in the region of aortic isthmus. Patient had sustained a motor vehicle accident.
4. Non-traumatic Chest Emergencies

PENETRATING AHEROMATOUS ULCER

Axial CECT showing an eccentric intimal ulcer. Patient usually presents with chest pain and are evaluated for CAD.
Axial CECT in lung and mediastinal window show classical pulmonary infarcts seen as wedge shaped pleural based lesions (arrow in Fig. A) due to bilateral segmental pulmonary embolus (arrow in Fig. B).
RASMUSSENS ANEURYSM

Axial CECT and coronal reformat images show a left upper lobe cavity with an enhancing focus within.
Non-traumatic Chest Emergencies

AORTIC DISSECTION

Type I: Originates in the ascending aorta, propagates at least to aortic arch often beyond it distally into the descending thoracic and abdominal aorta.
Type II: Originates in and confined to ascending aorta.

(For colour version see Fig. 1, Plate 1)

(49)
Type III: Originates in the descending aorta and extends distally down the aorta or rarely retrograde into the arch.

Axial CECT showing the intimal flap in the arch, ascending and descending aorta (arrow) type 1 dissection.

Axial CECT showing dissecting flap in the descending aorta, Figure B shows the endoluminal view at the entry point of the flap.
CONSOLIDATION

Scanogram and axial CT showing right upper lobe consolidation, note the classical air bronchogram.
ARDS DUE TO TOXIC GAS INHALATION

Digital scanogram with axial CT shows bilateral consolidative changes. Note the gravity dependent gradient (Fig. B) showing denser changes in the bases (arrow).
Non-traumatic Chest Emergencies

PULMONARY EDEMA

X-ray chest showing the classical bats wing appearance of pulmonary edema.
<table>
<thead>
<tr>
<th>Radiological sign</th>
<th>Cardiogenic</th>
<th>Renal</th>
<th>Capillary injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart shape</td>
<td>L-sided</td>
<td>R & L enlargement</td>
<td>Normal</td>
</tr>
<tr>
<td>Vascular pedicle width (SV)</td>
<td>+</td>
<td>++</td>
<td>Normal</td>
</tr>
<tr>
<td>Pulmonary blood distribution</td>
<td>Balanced or inverted</td>
<td>Balanced</td>
<td>Normal</td>
</tr>
<tr>
<td>Pulmonary blood volume</td>
<td>Normal or ++</td>
<td>++</td>
<td>Normal</td>
</tr>
<tr>
<td>Septal lines</td>
<td>++</td>
<td>+</td>
<td>No</td>
</tr>
<tr>
<td>Peribronchial & vessel cuffing</td>
<td>+</td>
<td>+</td>
<td>No</td>
</tr>
<tr>
<td>Air bronchogram</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Lung opacity distribution</td>
<td>Central & peripheral</td>
<td>Central</td>
<td>Peripheral & central</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>++</td>
<td>+</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Soft-tissue chest wall</td>
<td>+</td>
<td>++</td>
<td>Normal</td>
</tr>
</tbody>
</table>
5. Non-traumatic Abdominal Emergencies

CAUSES

a. The peritoneal cavity
 • Ascites
 • Peritonitis
 • Abdominal abscess
b. Liver and biliary tract
 • Jaundice: obstructive and non-obstructive
 • Cholecystitis
c. Pancreatitis
d. Urinary tract
 • Urinary stones
 • Infection
 • Pyelonephritis
 • Renal abscess
e. Adrenal hemorrhage
f. Gastrointestinal tract
 • Gastrointestinal hemorrhage
 • Bowel obstruction
Emergency Imaging

- Bowel infarction
- Bowel infection
- Appendicitis
- Diverticulitis
- Infectious enteritis and colitis

g. Epiploic appendagitis

h. Inflammatory bowel disease
 - Crohn disease
 - Ulcerative colitis

- CT protocols in patients with acute abdomen tailored to the clinical working diagnosis.

<table>
<thead>
<tr>
<th>No intravenous contrast</th>
<th>Ureteral stone, intra-abdominal bleeding, hematoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>No oral contrast</td>
<td>Ureteral stone, vascular disease, small bowel obstruction, pancreatitis</td>
</tr>
<tr>
<td>Negative oral contrast</td>
<td>Gastroroduodenal ulcer, intraductal gallstone</td>
</tr>
<tr>
<td>(water)</td>
<td></td>
</tr>
<tr>
<td>Rectal contrast (optional)</td>
<td>Appendicitis, diverticulitis</td>
</tr>
<tr>
<td>Increased flow rate of IV contrast</td>
<td>Vascular disease, hemorrhage, bowel ischemia, renal infarct</td>
</tr>
<tr>
<td>Delayed acquisition (> 3 min)</td>
<td>Pyelonephritis</td>
</tr>
<tr>
<td>Narrow collimation</td>
<td>Ureteral stone, intraductal gallstone, vascular disease</td>
</tr>
<tr>
<td>Small recon. interval (≤ 3 mm)</td>
<td>As with narrow collimation, + small bowel disease</td>
</tr>
</tbody>
</table>
GIST TUMORS WITH HEMORRHAGE

Digital scanogram and axial CECT showing a large encapsulated mass indenting the gastric fundus lesion shows central area of necrosis with hyperdense areas of hemorrhage. Patient presented with hematemesis.
IRREDUCIBLE HERNIA WITH SUBACUTE BOWEL OBSTRUCTION

Digital scanogram showing dilated bowel loops. Axial CECT at the pubic level shows a large inguinoscrotal hernia with bowel and mesentery as content.
Non-traumatic Abdominal Emergencies

VOLVULUS

Digital scanogram showing dilated large bowel loop in the right upper quadrant. At surgery a transverse colon volvulus was seen.
Digital scanogram showing centrally placed dilated bowel loops with increased lucency—the football sign of pneumoperitoneum. Axial NECT sections in lung window demonstrate gross pneumoperitoneum (arrow).
Non-traumatic Abdominal Emergencies

WHORL SIGN OF VOLVULUS

Axial CECT showing the classical whorl sign of midgut volvulus. This appearance is caused due to twisting of mesentery around the superior mesenteric artery axis.
NON-OCCULSIVE MESENTERIC ISCHEMIA

Axial CECT showing small bowel edema with intense serosal enhancement. Moderate peritoneal free fluid. Patient is a young female with SLE who has had multiple similar episodes in the past. The key to diagnosis is the clinical history and serosal enhancement.
Non-traumatic Abdominal Emergencies

EMPHYSEMATOUS PYELONEPHRITIS

Axial CECT showing a large walled of lesion with air fluid level displacing the kidney anteriorly (arrow).
ACUTE PYELONEPHRITIS

Axial CECT showing enlarged right kidney with altered attenuation showing punctuate hypodensities (arrow).
Non-traumatic Abdominal Emergencies

RENAL ABSCESS

Axial CECT showing right interpolar low attenuation lesion suggestive of abscess involving the adjacent parietal wall (arrow).
ACALCULUS CHOLECYSTITIS

Axial CECT showing thickened gallbladder with no luminal calculus.
Non-traumatic Abdominal Emergencies

CALCULUS CHOLECYSTITIS

Axial CECT showing distended gallbladder with wall thickening, note the impacted calculi in the neck. No significant pericholecystic changes noted.
Axial CECT showing distended gallbladder with mural thickening and luminal calculi, note the extensive pericholecystic fat stranding (arrow).
Non-traumatic Abdominal Emergencies

CHOLEDOCHOLITHIASIS WITH LIVER ABSCESS

Axial CECT showing dilated intrahepatic biliary radicles (thin arrow Fig. A). Left lobe liver shows a hypodense lesion suggestive of abscess. Figure B shows the impacted terminal CBD calculus.
TARGET SIGN

Axial CECT showing distal CBD calculus with a rim of bile causing the classical target sign of central high attenuation with peripheral lucent rim (arrow).
Rectus Sheath Hematoma

Axial CECT shows a left rectus sheath lenticular hyperdense lesion. Patient was an elderly lady who was receiving heparin for left MCA stroke.
RIGHT PARIETAL WALL ABSCESS

Axial CECT in a diabetic patient presenting with fever and pain in the right flank region with skin discoloration (arrow) shows right parietal wall phlegmonous changes with abscess formation.
PEUTZ-JEGHERS SYNDROME

Axial CECT in a patient with recurrent abdominal pain reveals multiple intussusception with polyps (arrow).
Emergency Imaging

TARGET SIGN
Bowel wall edema presents as circumferential thickening of the affected bowel loop demonstrating a hyperdense serosa, relatively hypoattenuating submucosa and mucosal hyperemia. This has been termed as the target appearance.

Axial CECT in a case with SMA thrombus showing the typical pattern of enhancement in an ischemic bowel (target sign, arrow).
Axial CECT showing acute thrombus in the mesenteric vein (arrow in Fig. A). Note the dilated small bowel loops with enhancement and mural air pockets.
Axial CECT in a patient with small bowel obstruction showing proximal jejunal thickening with mural air pocket (segmental gangrene was found at surgery).
Axial CECT in a patient with SMA thrombus showing pneumotosis of the distal small bowels (arrow in Fig. B), note the air within the mesenteric vessels (arrow in Fig. A). Portomesenteric vein gas is most commonly caused by mesenteric ischemia but may have a variety of other causes. The primary factors that favor the development of this pathologic entity are intestinal wall alterations, bowel distention, and sepsis. Portomesenteric vein gas is idiopathic in approximately 15% of cases.
HENOCHE-SCHÖNLEIN SYNDROME

Axial CECT in a patient with known Henoch-Schönlein purpura presenting with abdominal pain showing thickening of distal jejunum showing mucosal enhancement (arrow).

When gastrointestinal symptoms predominate or precede the appearance of skin lesions, the syndrome may mimic a number of acute abdominal diseases, resulting in unnecessary laparotomies. Gastrointestinal hemorrhage is mostly confined to the mucosa and submucosa, and full-thickness necrosis and perforation of a bowel loop is rare. Therefore, most gastrointestinal manifestations are self-limited and without residua: only 3–5% of patients develop bowel infarct, perforation, or irreducible intussusception.
Non-traumatic Abdominal Emergencies

SMALL BOWEL OBSTRUCTION

Digital scanogram showing grossly dilated small bowel loops (arrow), axial CECT showing a short segment ileal stricture (arrow) causing proximal bowel loop dilatation.
Axial CECT in a patient with right iliac fossa pain reveals the arrow head sign of appendicitis (arrow), note the pericecal inflammatory changes.
Non-traumatic Abdominal Emergencies

PSEUDOANEURYSM OF SMA

Axial CECT in a 46-year-old male with acute lower abdominal pain reveals a well margined lesion showing a eccentric area of intense arterial enhancement – suggestive of pseudo-aneurysm arising from the branch of SMA.
ACUTE PANCREATITIS

Axial CECT reveals hypodense edematous pancreatic parenchyma with rim of fluid, rim of fluid in the Morrison’s pouch (arrow) with thickening of the left lateroconal and anterior gerotas fascia (curve arrow).
Axial CECT shows an enlarged edematous pancreas with peritoneal free fluid.
PANCREATIC ABSCESS

Axial CECT with coronal reformation studied shows multiple air airpockets with a large air fluid level in pancreas (arrow). There is total loss of normal pancreatic architecture. With extensive peritoneal inflammatory change.
Axial CECT reveals a well marginated lesion in the right lobe inferior segment showing capsular enhancement with adjacent satellite nodules.
SMALL BOWEL PERFORATION

Axial CECT shows thickened small bowel loops showing mucosal enhancement with free air pockets in the adjacent periserosal mesentery.
Non-traumatic Abdominal Emergencies

WANDERING SPLEEN WITH INFARCTION

Axial CECT shows absence of spleen in its normal position, Figure B shows spleen in the left iliac fossa with multiple hypodense areas suggestive of infarcts.
Emergency Imaging

SPLENIC INFARCTION

Axial CECT showing wedge-shaped hypodensity in the spleen suggestive of a spleen.
A high-attenuation crescent sign was first described in 1988 by Pillari et al. This was the crescentic hyperattenuation area within the aortic wall or mural thrombus of AAA, which suggested penetration of blood into the mural thrombus. As the rupture progressed, the hemorrhage extended to the outer margin of the thrombus and was limited by the aortic wall.
SPONTANEOUS PSOAS BLEED

Axial CECT showing bulky left psoas with areas of high attenuation in a patient who had undergone thrombolysis for acute MI. Imaging features are suggestive of spontaneous psoas hematoma.
DUODENAL PERFORATION

Axial CT with oral contrast shows peritoneal free fluid with perihepatic free air. Figure B shows thin track of contrast leaking from the duodenum (arrow).
Axial NECT with MIP CT nephrogram shows left distal renal calculus (arrow).
LIVER HEMATOMA

Axial NECT showing a large acute hematoma involving the right lobe of liver.
Emergency Imaging

LACERATION

Axial CECT showing a linear hypodensity in the right lobe of liver suggestive of laceration.
SPLENIC LACERATION WITH CONTUSION

Axial CECT showing hypodense areas in the spleen at anterior and capsular margin suggestive of contusion. Linear hypodense areas in the splenic hilum is suggestive of laceration.
Emergency Imaging

RENAL LACERATION

Axial CECT showing linear laceration with subcapsular hematoma involving the left kidney.
PANCREATIC LACERATION

Axial CECT showing a linear hypodense area in the body of pancreas suggestive of contusion.
INTRODUCTION

Standard Radiographs
- First examination obtained
- Can be done as portable exam
- Failure to diagnose unstable injury on arrival may lead to additional, permanent neurologic damage.
- Complementary to CT: some injuries subtle on axial images

The advantages of CT are:
1. CT is excellent for characterizing fractures and identifying osseous compromise of the vertebral canal because of the absence of superimposition from the transverse view. The higher contrast resolution of CT also provides improved visualization of subtle fractures.
2. CT provides patient comfort by being able to reconstruct images in the axial, sagittal, coronal, and oblique planes from one patient positioning.
Musculoskeletal Trauma

The limitations of CT are:
1. Difficult to identify those fractures oriented in axial plane (e.g. Dens fractures).
2. Unable to show ligamentous injuries.

The advantages of MRI are:
1. Excellent soft tissue contrast, making it the study of choice for spinal cord survey, hematoma, and ligamentous injuries.
2. Provides good general overview because of its ability to show information in different planes (e.g. Sagittal, coronal, etc.).
3. Ability to demonstrate vertebral arteries, which is useful in evaluating fractures involving the course of the vertebral arteries.
4. No ionizing radiation.
Alignment on the A-P view should be evaluated using the edges of the vertebral bodies and articular pillars. The height of the cervical vertebral bodies should be approximately equal on the AP view.
Musculoskeletal Trauma

The height of each joint space should be roughly equal at all levels. Spinous process should be in midline and in good alignment. If one of the spinous process is displaced to one side, a facet dislocation should be suspected.

SOFT TISSUE SPACES

Prevertebral soft tissue swelling is important in trauma because it is usually due to hematoma formation secondary to occult fractures.

(101)
Emergency Imaging

Nasopharyngeal space (C1) — 10 mm (adult)
Retropharyngeal space (C2-C4) — 5-7 mm
Retrotracheal space (C5-C7) — 14 mm (children),
22 mm (adults).

Soft tissue swelling in symptomatic patients should be considered an indication for further radiographic evaluation. If the space between the lower anterior border of C3 and the pharyngeal air shadow is > 7 mm, one should suspect retropharyngeal swelling (e.g. Hemorrhage). This is often a useful indirect sign of a C2 fracture. Space between lower cervical vertebrae and trachea should be < 1 vertebral body.
Musculoskeletal Trauma

X-ray C spine lateral view with posterior elements highlighted.

(103)
Emergency Imaging

Schematic showing the various lines of the CVJ

The ratio of Basion - spinolaminar line of C1 to Opisthion-posterior cortex of C1 anterior arch normally ranges from 0.6 to 1.0, with the mean being 0.8. A ratio greater than 1.0 implies anterior cranio-cervical dislocation.
Assess four parallel lines. These are:
1. Anterior vertebral line (anterior margin of vertebral bodies)
2. Posterior vertebral line (posterior margin of vertebral bodies)
Emergency Imaging

3. Spinolaminar line (posterior margin of spinal canal)
4. Posterior spinous line (tips of the spinous processes)

These lines should follow a slightly lordotic curve, smooth and without step-offs. Any malalignment should be considered evidence of ligamentous injury or occult fracture, and cervical spine immobilization should be maintained until a definitive diagnosis is made.

ODONTOID FRACTURE

Sagittal and coronal MIP images showing fracture of the base of dens (arrow).

(106)
Sagittal reformation with axial CT showing anterior listhesis of C6/C7 vertebrae, note two endplates seen in the same axial slice.
C1 ARCH FRACTURE

Axial CT with 3D SSD reformation studied shows fracture of the anterior arch of atlas involving the right lateral mass (arrow).
Musculoskeletal Trauma

BURST FRACTURE

Axial CT with 3D SSD projection showing a burst fracture—note the fracture involving the posterior vertebral margin with epidural space involvement.
Emergency Imaging

COLUMNAR STRUCTURE OF SPINE

- Spine structurally is described as tricolumnar
- Anterior, middle and posterior columns
- Each column has a component against compression force and another against tensile stress
- Bony and disk component resists compression force
- Ligamentous component resists tensile stress
- Anterior column
 - Bone: body centrum and disk
 - Lig: Anterior longitudinal ligament and anterior part of annulus fibrous
- Middle column
 - Bone: Posterior part of vertebral body and uncovertebral joints
 - Lig: Posterior longitudinal ligament and posterior part of annulus fibrous
- Posterior column
 - Bone: Lateral masses and facet joints
 - Lig: Capsule of facet joint and interspinous ligament

Middle column by far the importance for the stability. If any two of the above three components fail, then spine can be unstable.
Musculoskeletal Trauma

TRAUMATIC LISTHESIS WITH TRANSECTION OF CORD

Sagittal reformation with axial section showing D6/D7 complete listhesis with transection of cord, note two vertebral bodies at the same level.

MECHANISM OF SPINAL INJURY

Pathria and colleagues have classified the mechanisms of spinal injury as follows:

- Flexion
- Extension
- Rotary
Emergency Imaging

- Compression
- Distraction
- Shear forces
 These may produce damage by isolation or in combination.

Landmark MRI patterns described by Yamashita et al 1990, in patients scanned sequentially following injury:
- Type I- normal signal intensity on T1 and T2- with excellent prognosis and good neurological outcome.
- Type II- normal signal on T1 and high signal on T2- this pattern has good neurological outcome if it resolves to type I, if type II pattern persists, it indicates no improvement.
- Type III- low signal on T1 and high signal on T2- indicates myelomalacia
- Type IV- atrophy
- Type V- syrinx
 Type III, IV and V all predict a poor outcome.
WHIP LASH INJURY

Sag T2 W and sag T1 W images—spondylotic changes are seen = disk bulges and osteophyte formation at C3-C4 and C4-C5 levels =in this patient with hyperextension injury has produced whip lash cord contusion. The PLL is intact. All is stretched by underlying hematoma. Hematoma is also seen in the dager space of the neck.

Prevertebral collections are best seen on T2 WI in sagittal plane.
Emergency Imaging

EPI DURAL HEMATOMA

Sag T2W, sag T1W, coronal T2W

Epidural hematoma is seen in the left parasagittal imaging. The cord is displaced to the right and this is seen on the coronal images.

T1 WI are very important in detection of epidural bleeds as hyperintensity of the CSF and the hematoma may not be separately appreciated on T2WI.
FSE T2 axial, TIW axial unusual collection of epidural hematoma in the contralateral side (left) with fracture through the right lateral mass of C2 vertebra. Nerve root encasement by the epidural hematoma is best made out on FSE T2 WI. Detection of the epidural hematoma is, however, easier on TIWI.
T2W sagittal images of the C spine may help in detecting fractures of the odontoid which can be missed on conventional CT images as the plane of fracture may be parallel to the orientation of the slice direction.
FLEXION INJURY

FSE T2W and T1W sag W disruption of all, PLL, flavum and interspinous ligaments are seen well on FSE T2 sagittal images. Traumatic discitis, prevertebral hematoma and cord contusion are also seen well on T2 WI. Characterization of the epidural mass as epidural hematoma is, however, made out best on T1 WI.
BRACHIAL PLEXUS INJURY

Axial T1 and T2 W images

This patient had epidural hematoma encasing the C6 roots on the Rt side at C5-C6 neural foramen. Paravertebral muscle contusion was also seen involving the scaleneus aterio, scaleneus medius muscles and the intervening brachial plexus roots, proximal trunks.

Epidural hematoma is seen well on T1 WI. Although muscle contusion can be suspected on T1 WI by the increase in muscle size and blurrin in outline it is made out well on T2 WI by the signal lengthening on FSE T2 WI.
Musculoskeletal Trauma

FLEXION AND EXTENSION STUDIES

T2W sagittal weighted images showing odontoid fracture in neutral (Fig. A), extension (Fig. B) and flexion (Fig. C) positions. Extension studies show an intact PLL. There is increased indentation on the cord by C2 body on flexion.
FRACTURES OF HIP

3D SSD images showing fracture of the quadrilateral plate of the acetabulum.
COMPLEX ACETABULAR FRACTURES

Axial CT with 3D SSD image showing fractures involving the anterior, posterior acetabular columns and the quadrilateral plate.
Emergency Imaging

DISLOCATION OF HIP

Axial CT with 3D SSD reformation shows fracture of the anterior acetabular column with anterior dislocation.

Axial sections showing anterior dislocation (Fig. A) and posterior dislocation (Fig. B) of the right hip.

(122)
Musculoskeletal Trauma

Axial CT with 3D Raysum projection showing central dislocation of the right hip (arrow).

TIBIAL PLATEAU FRACTURES

Axial CT with 3D SSD showing fracture of the left posterior tibial plateau with a separated fragments.
ARTICULAR FRACTURE OF DISTAL FEMUR

Axial CT with sagittal reformats through the knee showing a complex fracture involving the femoral epiphysis with separation of the fractured fragment.

ARTICULAR FRACTURE WITH HEMARTHROSIS

Axial CT sections showing fat fluid level in the supra-patellar bursa due to an anterior tibial plateau fracture.
PROXIMAL HUMERAL FRACTURES

3D SSD images showing comminuted fracture of the right proximal humerus with a transarticular fractures.
Emergency Imaging

3D SSD image showing comminuted fracture of the right proximal humerus, with three part fracture separation.
Musculoskeletal Trauma

3D SSD reformats show a linear fracture of the scapular body.
3D MIP with SSD reformation shows fracture of the coronoid process of ulna.
Musculoskeletal Trauma

3D VR images showing fracture of the capitulum of humerus.
Emergency Imaging

FRACTURE AROUND THE WRIST

3D VR image showing fracture of the radial styloid process.
Musculoskeletal Trauma

FRACTURE OF CARPAL BONES

Axial high resolution images through the carpal bones show fracture of the hook of hamate.
Axial CT with 3D SSD reformation shows diastasis of the right sacroiliac joint (arrow), also note the left iliac fracture involving the SI joint.
3D SSD reformation shows fracture of the mandibular symphysis with distraction.
MAXILLOFACIAL INJURIES

High-resolution CT imaging has replaced conventional radiography for the evaluation of facial trauma because of its widespread availability and fast imaging capability. CT can also be performed with less potentially hazardous positioning of injured patients.

Radiographic Signs of Facial Fractures

Direct Signs

- Nonanatomic linear luencies
- Cortical defect or diastatic suture
- Bone fragments overlapping causing a “double-density”
- Asymmetry of face

Indirect Signs

- Soft tissue swelling
- Periorbital or intracranial air
- Fluid in a paranasal sinus.
The most common patterns of midfacial fractures are summarized in the table below.

<table>
<thead>
<tr>
<th>Fracture Type</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zygomaticomaxillary complex (tripod fracture)</td>
<td>40 %</td>
</tr>
<tr>
<td>Le Fort I</td>
<td>15 %</td>
</tr>
<tr>
<td>Le Fort II</td>
<td>10 %</td>
</tr>
<tr>
<td>Le Fort III</td>
<td>10 %</td>
</tr>
<tr>
<td>Zygomatic arch</td>
<td>10 %</td>
</tr>
<tr>
<td>Alveolar process of maxilla</td>
<td>5 %</td>
</tr>
<tr>
<td>Smash fractures</td>
<td>5 %</td>
</tr>
<tr>
<td>Other</td>
<td>5 %</td>
</tr>
</tbody>
</table>

Zygoma Fractures

Probably the most common facial fracture is the tripod or zygomaticomaxillary complex fracture, so called because it involves separation of all three major attachments of the zygoma to the rest of the face.
Frontal view of a zygomaticomaxillary complex fracture.

Submentovertex view of a zygomaticomaxillary complex fracture.
Musculoskeletal Trauma

This fracture is usually due to a direct blow to the body of the zygoma. Occasionally, extraocular muscles may become entrapped in the zygomaticomaxillary component of the fracture complex. CT is extremely helpful in evaluating these fractures. It is therefore extremely important to obtain precise realignment of the fractured bone to prevent long-term visual changes.

Fractures may be isolated to the zygomatic arch. Clinically, these injuries are usually due to a blow from the side of the face. Patients with this injury often present with flatness of the lateral cheek area and inability to open their mouth, due to impingement of the zygomatic arch fragment upon the coronoid process of the mandible or the temporalis muscle.

Nasal-Orbital-Ethmoid Fractures

The nasal-orbital-ethmoid area is bordered by the orbital cavities laterally. Anteriorly, the space is demarcated by the frontal process of the maxilla, the nasal bones, and the frontal process of the frontal bone. Posteriorly, the boundary is the anterior aspect of the sphenoid bones and the roof is formed by the cribriform plate of the ethmoid bone. Injuries to this region of the facial skeleton generally occur from a direct frontal force. The diagnosis of fractures in this region is usually made by physical findings aided
Emergency Imaging

by a CT scan. Routine films often fail to demonstrate the degree and location of the disruption. Special considerations of fractures in this region involve assessment of the lacrimal apparatus (tear duct system) and injury to the canthal ligaments. Disruption of the canthal ligaments can result in traumatic telecanthus (apparent widening of distance between the eyes).

BLOW OUT FRACTURES

Another common fracture is the orbital floor fracture, or “blowout” fracture. The usual mechanism is a blow to the eye, with the forces being transmitted by the soft tissues of the orbit downward to the thin floor of the orbit. The floor is usually the path of least resistance, and fractures downward into the maxillary sinus. On a Waters view, one may see a soft tissue mass on the superior margin of the maxillary sinus, representing the herniated periorbital tissues into the sinus. One may also see a “trapdoor” fragment of bone protruding down into the sinus, often hinged on the ethmoidal side. CT will, of course, show these fractures and soft tissue mass much better.
Musculoskeletal Trauma

Blowout fracture” — the arrows point to the fracture fragments and periorbital tissue which have herniated into the maxillary sinus.
Emergency Imaging

Le Fort Fractures

These are complex bilateral fractures associated with a large unstable fragment ("floating face") and invariably involve the pterygoid plates. Three main planes of "weakness" in the face, which correspond to where fractures often occur: the transmaxillary plane, the subzygomatic or pyramidal plane and a craniofacial plane.

Frontal views of Le Fort complex fractures I - III.
Musculoskeletal Trauma

Lateral views of Le Fort complex fractures I - III.

The Le Fort I, or transmaxillary fracture runs between the maxillary floor and the orbital floor. It may involve the medial and lateral walls of the maxillary sinuses and invariably involves the pterygoid processes of the sphenoid. Clinically, the floating fragment will be the lower maxilla with the maxillary teeth.

The Le Fort II occurs along yet another weak zone in the face, and is sometimes called a pyramidal fracture because of its shape. A common mechanism is a downward blow to the nasal area.

The most severe of the classic Le Fort fracture complexes is the Le Fort III. I suppose that this is pretty obvious, given a three-part grading system. In this case, the large unstable (floating) fragment is virtually the entire face! Thus, this fracture is also referred to as craniofacial disassociation.
Emergency Imaging

This is a very severe injury, and is often associated with significant injury to many of the soft tissue structures along the fracture lines. Generally, considerable force is necessary to produce this injury, and it is uncommon as an isolated injury. It may also occur in association with severe skull and brain injuries.

With the exception of the Le Fort I injury, “pure” Le Fort injuries are not commonly seen. More commonly seen are variants of the Le Fort classification. One of the most common of these is the Le Fort II - tripod fracture complex. This complex is usually due to the large forces encountered in a motor vehicle accident.

Besides the classic Le Fort patterns and the mixed Le Fort variants, there is another common pattern which is called, for obvious reasons, a “smash” fracture. In these injuries, severe comminution of the face is present, and underlying skull injury is likely. These patients are often in unstable condition with associated axial and appendicular skeletal injuries as well. This category includes several varieties of otherwise unclassifiable fractures, which are named for the portion of the face primarily involved.
Evaluation and management strategies for specific maxillofacial injuries

<table>
<thead>
<tr>
<th>Suspected injury</th>
<th>Physical exam</th>
<th>Radiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal bone fracture</td>
<td>Palpate periorbital rim anesthesia</td>
<td>Skull film/Caldwell view CT frontal bone/sinus</td>
</tr>
<tr>
<td></td>
<td>Test for forehead anesthesia EOM testing</td>
<td></td>
</tr>
<tr>
<td>Blowout fracture</td>
<td>Test for infraorbital anesthesia EOM testing</td>
<td>Water’s view CT orbits, especially coronal/sagittal views</td>
</tr>
<tr>
<td></td>
<td>Subcutaneous air Visual testing</td>
<td></td>
</tr>
<tr>
<td>Nasal fracture</td>
<td>Septal hematoma Cosmetic deformity</td>
<td>None necessary in adults, individualize in children</td>
</tr>
<tr>
<td></td>
<td>Lateral subconjunctival hemorrhage</td>
<td>CT face/orbits</td>
</tr>
<tr>
<td></td>
<td>Drooping lateral canthus</td>
<td></td>
</tr>
<tr>
<td>Tripod fracture</td>
<td>Test for infraorbital anesthesia</td>
<td>Submental vertex view</td>
</tr>
<tr>
<td></td>
<td>Examine for open bite</td>
<td></td>
</tr>
<tr>
<td>Zygomatic arch fracture</td>
<td>Intraoral palpation Worm’s eye/Bird’s eye views</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Le Fort fracture</td>
<td>Mid-face mobility Facial lengthening</td>
<td>CT face</td>
</tr>
<tr>
<td></td>
<td>Examine for open bite</td>
<td></td>
</tr>
<tr>
<td>Mandibular fracture</td>
<td>ROM jaw Spatula test Dental exam</td>
<td>Panorex</td>
</tr>
<tr>
<td></td>
<td>Lower lip anesthesia</td>
<td>Towne’s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral oblique mandible</td>
</tr>
</tbody>
</table>
Orbital Fractures

Orbital fractures may be isolated or occur as a component of more complex mid-face fractures, including the tripod fracture, the Le Fort II and the Le Fort III fractures. Isolated orbital fractures may involve one or more of the following: floor, the lamina papyracea, roof, or lateral wall. Orbital floor fracture (inferior blow out) results from a direct blow to the orbit by an object that is too large to enter the orbit. The force of the blow is absorbed by the orbital rim and is transmitted to the thinner orbital floor, which usually fractures in the middle third near the infraorbital canal.

Herniation of orbital fat, inferior rectus muscle, or the inferior oblique muscle can occur with muscle entrapment, resulting in diplopia.

Fracture of the lamina papyracea (medial blow out) may occur either as an isolated fracture or in conjunction with an orbital floor fracture. Orbital emphysema, resulting from the ethmoid sinus fracture occurs commonly in patients with medial blowout. Herniation of orbital fat and entrapment of medial rectus muscle may occur.

The blow-in fractures involve the orbital roof with inferior displacement of fracture fragments into the soft tissues of the orbit. In more than half of such cases, it is associated with frontal sinus or skull fractures.
Musculoskeletal Trauma

Ocular trauma classification

Closed-globe injury
The eyewall does not have a full-thickness wound.

Open-globe injury
The eyewall has a full-thickness wound—a through-and-through injury.

Rupture
Full-thickness wound caused by blunt impact and an inside-out mechanism.

Laceration
Full-thickness wound by sharp object.

Penetrating injury
Single laceration, usually by a sharp object.

Perforating injury
Two full-thickness lacerations (entrance + exit) usually caused by sharp object or missile

Approach to Orthopedic Radiograph

Misinterpretation of radiographic studies is a common source of medical error in both the inpatient and outpatient arenas. Of particular concern is the significant number of misinterpretations of plain radiographs.

The prevalence of this patient safety issue may result from the large volume of patients receiving these radiologic
Emergency Imaging

tests, which are often done outside normal working hours when radiologists are not available to provide an initial interpretation.

Plain radiographs remain pivotal in the initial assessment of patients with a suspected fracture or dislocation. The radiographic approach should be tailored to the patient’s history and physical examination. The possibility that an unusual or unexpected finding may represent a normal physical variant should always be considered.

Identify the radiographic features of fractures and dislocations. Identify associated occult injuries

ABC SYSTEM OF ANALYSIS:
A-ADEQUACY, ALIGNMENT
B-BONES
C-CARTILAGE
SOFT TISSUE
Commonly-missed Orthopedic Injuries

<table>
<thead>
<tr>
<th>Body part</th>
<th>Dislocation</th>
<th>Occult fracture</th>
<th>There is more than one injury present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrist</td>
<td>Scapholunate dissociation</td>
<td>Scaphoid</td>
<td>Galeazzi fracture-dislocation</td>
</tr>
<tr>
<td></td>
<td>Perilunate dislocation</td>
<td>Triquetrum</td>
<td>Distal radius fracture + carpal injury</td>
</tr>
<tr>
<td></td>
<td>Lunate dislocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elbow</td>
<td>Radial head dislocation</td>
<td>Radial head</td>
<td>Monteggia fracture-dislocation</td>
</tr>
<tr>
<td>Pelvis/</td>
<td>Hip dislocation</td>
<td>Femoral neck</td>
<td>Pelvic ring disruption</td>
</tr>
<tr>
<td>Hip</td>
<td></td>
<td>Sacrum</td>
<td></td>
</tr>
<tr>
<td>Knee</td>
<td>Knee dislocation</td>
<td>Tibial plateau</td>
<td>Maisonneuve fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Segond patella</td>
<td></td>
</tr>
<tr>
<td>Foot</td>
<td>Lisfranc injury</td>
<td>Calcaneus</td>
<td>Calcaneus + Thoracolumbar fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Talus</td>
<td></td>
</tr>
</tbody>
</table>
WRIST
The complex anatomy of the wrist lends itself to a myriad of injury patterns. The normal radiographic anatomy of the wrist can be seen in Figures 1 and 2. In a normal PA view, visualization of three smooth arcs is essential. These arcs are drawn along (1) the proximal aspect of the proximal row of carpal bones, (2) the distal aspect of the proximal row of carpal bones, and (3) the proximal aspect of the distal row of carpal bones. Further, the intercarpal distance should be less than 3 mm. Disruption of any of these arcs or an increase in the normal intercarpal distance suggests a fracture or dislocation.
Schematic of wrist PA and lateral view showing the normal alignment.
ELBOW

Elbow radiographs are notoriously poor in directly detecting fractures. Indirect signs such as fat pads and bony misalignments are often the only suggestions of an injury. These fat pads can become displaced by an intra-articular effusion such as a hemarthrosis. This anterior fat pad is considered abnormal, however, when it becomes displaced and elevated (called a “sail sign”).

In contrast, the presence of any posterior fat pad, regardless of size and displacement, is pathological.

Bony alignment: The first alignment is the radio-capitellate line. On both the AP and lateral views, a longitudinal line drawn through the midshaft of the radius should bisect the capitellum. Any misalignment suggests a radial head dislocation.

The second line is the anterior humeral line. On a lateral view, a longitudinal line drawn along the anterior aspect of the humerus should bisect the capitellum.
Musculoskeletal Trauma

Schematic showing normal AP and lateral view showing the normal alignment.
Emergency Imaging

Schematic showing the indirect signs of occult elbow fractures.

PELVIS AND HIP

The pelvis and hip are radiographically complex structures, and fractures in these areas comprise a substantial portion of missed fractures. Overlapping bones and the oblique orientation of many structures on the AP view are often the cause of radiographic misinterpretations.
Schematic showing the normal alignment of hip in AP view.
Emergency Imaging

There are three extremely important “O”ccult fractures of the pelvis and hip which require careful scrutiny. The first is a femoral neck fracture - the most commonly missed hip fracture.

The second “O”ccult fracture is of the sacrum.

And the third “O”ccult fracture involves the acetabulum, the pelvic articulation site for the femoral head. The acetabulum can be divided into anterior and posterior columns.

KNEE

Plain radiographs of the knee usually include an AP and lateral view. With this two-view imaging protocol, the sensitivity of detecting knee fractures is only 79 percent. The addition of two oblique views for a four-view imaging protocol increases this sensitivity to 85 percent. To reduce the number of overlooked knee fractures, consider obtaining oblique plain radiographs and possibly even CT imaging for high-risk patients.
Musculoskeletal Trauma

Schematic showing normal alignment around the knee.
There are three high-risk, “O”ccult fractures of the knee. The first is a tibial plateau fracture, which alone accounts for one-third of all knee fractures.

The second “O”ccult knee fracture is a Segond fracture—a proximal lateral tibial avulsion fracture. The fractured piece was the insertion site of the lateral capsular ligament. Although the fracture piece appears clinically insignificant, be wary that Segond fractures have a significant concurrent risk for anterior cruciate ligament (ACL) tears.
Musculoskeletal Trauma
Third “O”ccult fracture is a patella fracture, which comprises 40 percent of all knee fractures. It is usually the result of direct blunt trauma to the patella. Because of the overlapping femoral condyles, the AP view is poor in detecting patellar fractures.

The primary “H”alf pathology for the knee is a Maison-neuve fracture. In this injury, a fracture of the proximal fibula is associated with a fracture of the medial malleolus or deltoid ligament of the ankle. Often the ankle mortise is widened, and the tibiofibular syndesmosis is disrupted.

FOOT

Adequate imaging of the foot includes an AP, oblique, and lateral view. In addition to looking for cortical disruptions, examining alignments and measuring angles are essential in detecting subtle pathology. On the AP view, the lateral aspects of the first metatarsal and the first cuneiform should align, as should the medial aspects of the second metatarsal and the second cuneiform. On the oblique view, the medial aspects of the third metatarsal and third cuneiform should align. On the lateral view, Bohler’s angle is generated by a line bordering the superior aspect of the posterior calcaneal tuberosity intersecting a line connecting the superior talar articular surface with the superior aspect of the anterior calcaneal process.

This angle measures 20 to 40 degrees normally.
Musculoskeletal Trauma

Schematic showing normal alignment of the tarsal and metatarsal bones.

(159)
Schematic showing the normal Bohler’s angle.
Musculoskeletal Trauma

Two “O”ccult fractures of the foot include the calcaneus and talus fractures. Commonly this fracture occurs after a patient falls from a height onto his or her heel. Radiographic findings include a cortical break, and a Bohler’s angle of less than 20 degrees suggests an impaction fracture. Calcaneal fractures frequently require CT imaging to further assess the severity of bony fragmentation.

The second “O”ccult fracture, a talus fracture, ranks as the second most commonly fractured tarsal bone. Anatomically, the talar neck is the site of the majority of these fractures.
CT PERfusion IN ISCHEMIC STROKE

Perfusion CT

Brain Perfusion—Perfusion of normal brain tissue is maintained within a narrow range by autoregulation of the cerebral vasculature. Normal blood flow in human gray matter is about 50-60 mL/100 g/min. In cases of occlusion of a major artery like the MCA, the survival of brain tissue depends on the minimum necessary collateral supply from leptomeningeal anastomoses.

1. At a cerebral blood flow (CBF) of 35 mL/100 g/min or less (i.e., approximately 50-60% of normal values), protein synthesis within neurons ceases completely. In this oligemic stage, tissue can survive as long as CBF is not further reduced.

2. At a CBF of 20 mL/100 g/min or less (i.e., approximately 30-40% of normal values), synaptic transmission between neurons is disturbed, leading to loss of function of still viable neurons. Ischemic brain tissue that is
“living” under these conditions adjacent to already irreversibly damaged tissue is defined as tissue at risk.

3. At a CBF of 10 mL/100 g/min or less (i.e., 20% of normal values), irreversible cell death occurs. Reperfusion of tissue at risk within a therapeutic window of 3 hours or even more can lead to complete regeneration of neuronal function.

Typical parameters used to describe cerebral perfusion include:

1. Mean transit time (MTT), that is, the time between arterial inflow and venous outflow.

2. Time to peak (TTP), which is often calculated in perfusion CT studies and represents the time from the beginning of contrast material injection to maximum (peak) enhancement within an intracerebral region of interest (ROI).

3. Cerebral blood volume (CBV), that is, the volume of blood per unit of brain mass. Normal CBV is about 4-5 mL/100 g. Under normal conditions, the relationship between CBF and CBV is expressed by the equation \[\text{CBF} \times \text{MTT} = \text{CBV}. \]

When the capillary bed dilates in the early stage of ischemia, CBV will remain unchanged or even increase despite a decrease in CBF. When the mechanisms of autoregulation can no longer compensate for a further
reduction in CBF, CBV will also decrease. Therefore, simultaneous analysis of CBF and CBV as calculated from perfusion CT data is necessary to predict the volume of irreversibly damaged brain tissue and thus develop a prognosis for ischemic stroke.

<table>
<thead>
<tr>
<th>Pathologic condition</th>
<th>Perfusion CT finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Normal Prolonged</td>
</tr>
<tr>
<td>Arterial stenosis or occlusion with excellent compensation</td>
<td>Prolonged Moderately reduced (> 60%) Normal or slightly reduced (> 80%)</td>
</tr>
<tr>
<td>Oligemic tissue that will probably survive</td>
<td>Prolonged Markedly reduced (> 30%) Moderately reduced (> 60%)</td>
</tr>
<tr>
<td>Tissue at risk</td>
<td>Prolonged Markedly reduced (> 30%) Moderately reduced (> 60%)</td>
</tr>
<tr>
<td>Tissue that is probably irreversibly damaged</td>
<td>Strong prolongation or not measurable Severe reduced (< 30%) Severe reduced (< 40%)</td>
</tr>
</tbody>
</table>
CT Angiography

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Step Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>End of Examination. Yes → Hemorrhage. No → CT-Perfusion (CTP). Lower section covering basal ganglia.</td>
</tr>
<tr>
<td>6</td>
<td>CTP-Evaluation: Color maps of TTP, CBF, CBV. Comparison of areas with restricted perfusion to opposite side. Relative values of CBF and CBV.</td>
</tr>
<tr>
<td>10</td>
<td>CTA-Visualization: Inspection of the source images. MIP of Circle of Willis. Thin section MIP (1 cm) of basilar artery and carotid arteries. CTA-reconstruction. Slice thickness 1.25 mm, FOV 120 mm, increment 0.7 mm.</td>
</tr>
<tr>
<td>12</td>
<td>Initial evaluation and interpretation: “Early signs” of ischemic stroke? Reduced perfusion? Stenosis of occlusion of major arteries?</td>
</tr>
<tr>
<td>15</td>
<td>Secondary evaluation: Quantification of perfusion results. Exact localization, quantification and visualization of arterial stenosis if present. (Film) Documentation: NECT 20 images (1 Film), Maps of perfusion: TTP, CBF, CBV (1 Film), CTA: 3 mm axial MPR, 40 images (2 Films), MIP of major arteries (1 Film).</td>
</tr>
</tbody>
</table>

3D MIP angiogram showing occlusion of left MCA M1 and M2 segments.
CT Angiography

A
Blood volume

B
Blood flow

(167)
Emergency Imaging

CT perfusion maps
(For colour version see Figs 2A to C, Plate 3)
CT Angiography

CT ANGIOGRAM OF NECK VESSELS

3D MIP and curved MPR images showing occlusion of right ICA from the origin (For colour version see Fig. 3, Plate 4).
CT ANGIOGRAM OF CIRCLE OF WILLIS

(A) Axial CT showing pericallosal hematoma, (B) Volume rendered image showing the acomm aneurysm (For colour version see Figs 4A and B, Plate 5).
CT Angiography

Axial CT and VR image of circle of Willis showing occluded left vertebral artery (For colour version see Fig. 5, Plate 6).
CT AORTOGRAM

3D volume rendered image with sagittal MPR showing a long segment thoracoabdominal dissection. Note the entry and exit points of this type 3 DeBakey's dissection (For colour version see Fig. 6, Plate 7).
CT Angiography

Sagittal MPR with VR image showing a large lobulated saccular aneurysm of the descending thoracic aorta (For colour version see Fig. 7, Plate 7).
Emergency Imaging

CT ANGIOGRAM OF EXTREMITIES

3D VR image showing occlusion of the left brachial artery. (For colour version see Fig. 8, Plate 8)

3D VR showing right proximal brachial occlusion. (For colour version see Fig. 9, Plate 8)
CT Angiography

3D VR with MIP images showing occlusion of the right brachial proximal to bifurcation *(For colour version see Fig. 10, Plate 9).*
Emergency Imaging

3D VR with MIP images showing comminuted fracture of tibia and fibula with occlusion of the popliteal artery (For colour version see Fig. 11, Plate 9).
CT Angiography

CT RENAL ANGIOGRAM

3D MIP with VR image showing left renal pseudoaneurysm post trauma *(For colour version see Fig. 12, Plate 10).*
CT ANGIOGRAM OF SVC OBSTRUCTION

Coronal MIP and axial CECT showing SVC stenosis secondary to fibrosing mediastinitis.
3D VR and curved MPR in a young male who had atypical chest pain shows significant narrowing of proximal left anterior descending artery (*For colour version see Fig. 13, Plate 10*).
3D VR and curved MPR in a young smoker showing distal right coronary artery occlusion (For colour version see Fig. 14, Plate 11).
3D VR and curved MPR in a middle aged lady with positive stress test shows short segment occlusion of left anterior descending artery (For colour version see Fig. 15, Plate 11).
Coronal fusion image with VR image in a patient presenting with hemoptysis- showing bilateral upperlobe cavitary lesions with fungal ball being supplied by the bronchial arteries (For colour version see Fig. 16, Plate 12).
CT Angiography

CT ANGIOGRAM OF MESENTERIC VESSELS

(A) 3D VR image showing normal superior mesenteric artery and branches, (B) VR image showing proximal SMA occlusion (For colour version see Fig. 17, Plate 12).
TRAUMA PEARLS

Initial Survey
1. Primary survey
2. Resuscitation phase
3. Secondary survey
4. Definitive treatment and re-evaluation
5. Transfer if appropriate

Primary Survey
1. Airway and Cervical spine
 • Assess for patency ± removal of foreign material, chin lift, jaw thrust
 • Assume Cx spine injury in all patients with multisystem trauma
 • Lateral Cx spine X-ray does not exclude all cervical injuries
2. Breathing
 • Exposure of the chest
 • High FiO₂ > 0.85
Emergency Imaging

Three commonest traumatic causes of embarrassed ventilation:
i. Tension pneumothorax
ii. Open pneumothorax
iii. Flail chest with pulmonary contusion

3. Circulation
 i. blood-volume and conscious state
 • Skin colour and perfusion
 • Pulse rate and character
 ii. bleeding
 • Esanguinating external haemorrhage should be immediately controlled
 • Occult internal haemorrhage may be difficult to detect/control
 • MAST suit may be appropriate for abdominal/lower limb bleeding

4. Disability - overt neurological status
 i. Level of consciousness
 A - alert
 V - responds to verbal stimuli
 P - responds to painful stimuli
 U - unresponsive
 ii. Pupillary size and response to light

5. Exposure - complete exposure of the patient
Appendix

Resuscitation

1. Supplemental O₂
2. IV access
 i. Minimum of 2x 16 G cannulae
 ii. Blood drawn for X-match, FBE, Coags
 iii. Commence fluid replacement
 • Initially with either balanced salt solution or synthetic colloid use blood if > 2-3 litres in adult with no improvement
 • Type-specific unmatched, or O-negative blood acceptable
 • Adequacy of resuscitation judged by physiological parameters
3. ECG monitoring
 • HR, dysrhythmias
4. Urinary catheter
 • Catheter insertion generally contraindicated when,
 i. blood at the external meatus
 ii. blood in the scrotum
 iii. Impalpable, or high riding prostate
5. Naso/oro-gastric tube
Emergency Imaging

Secondary Survey

1. **Head**
 i. Eyes - pupillary size, response, EOM’s, conjunctival haemorrhage
 - visual acuity, lens dislocation, fundi/optic disc changes
 ii. Ears - TM patency, haemorrhage, CSF leak
 iii. Scalp - lacerations, haematoma

2. **Maxillo-facial trauma**
 - When *not* associated with airway compromise, should be deferred to definitive management
 - Mid-face fractures may have fractures of the *cribriform plate*

3. **Cervical Spine/Neck**
 - Presume in all patients with blunt maxillo-facial trauma and multisystem trauma
 - Absence of neurological deficit, pain or tenderness *does not* exclude significant injury
 - Helmets should be removed with manual in-line stabilisation
 - Penetrating wounds through the platysma require surgical exploration in theatre

4. **Chest**
 - Anterior, posterior, rib-cage, thoracic spine
 - Bone injury, soft-tissue injury, penetrating injury
Appendix

- Diminished apical breath sounds may be only sign of pneumothorax
- Soft heart sounds/narrow pulse pressure in tamponade

5. **Abdomen**
 - Anterior, posterior, lumbar spine
 - Obvious swelling, penetrating injury
 - Consider peritoneal lavage vs CT scan
 - Many centres now trialling emergency ultrasound in assessment

6. **Rectum**
 - Anal sphincter tone
 - Integrity of rectal wall, presence of fractures
 - Position of prostate
 - Presence of blood

7. **Fractures**
 - Long bones, joints, digits
 - Pelvis, thoracic cage
 - Spine, cranium

8. **Neurological**
 - CNS status - AVPU
 - GCS, pupillary responses
 - Motor and sensory evaluation of extremities
 - Vasomotor stability, HR, sphincter tone

(189)
emergency imaging

9. **Investigations**
 i. Blood - X match, FBE, MBA, Coags
 ii. X-rays - CXR, AXR, Cx spine
 - pelvis, Tx/Lm spine, long bones
 ± contrast studies
 iii. Diagnostic Peritoneal Lavage
 iv. Ultrasound
 v. CT scan
 vi. Laparotomy

CHEST TRAUMA

Acute Life Threatening Injuries

a. Airway obstruction
b. Tension pneumothorax
c. Open pneumothorax
d. Haemothorax
e. Flail chest
f. Cardiac tamponade
g. Aortic rupture
h. Air embolism - broncho-pulmonary venous fistula

 NB: Chest injuries result in ~1/4 trauma deaths, only ~15 percent of such injuries require operative intervention
Appendix

Indications for Intercostal Tube Drainage

1. Pneumothorax
2. Haemothorax
3. Empyema
4. Bronchial rupture
5. Oesophageal rupture
6. Prior to transport in high-risk patients

 Clinical diagnosis for which radiology is used for confirmation:
 a. Respiratory distress
 b. Tracheal deviation
 c. Unilateral diminished breath sounds
 d. Tympanic percussion note
 e. Pulse paradoxus ± hypotension
 f. Distended neck veins
 g. Cyanosis

MASSIVE HEMOTHORAX

Usually the result of > 1500 ml blood in the thoracic cavity
1. Shock
2. Stony dull percussion note
3. Neck veins → flat, due to severe hypovolaemia, or Distended, due to impaired venous return
4. Confirmed by CXR
Emergency Imaging

FLAIL CHEST
Usually 2° multiple rib fractures as a result of blunt trauma if large enough may result in lung pump failure,

1. *Dominant lesion* is injury to underlying lung
2. Rarely does flail alone result in respiratory failure
3. Hypoventilation 2° to pain
 - CXR may show multiple fractured ribs, but may miss costo-chondral separation paradoxical movement may be hidden by splinting in acute setting.

CARDIAC TAMPONADE
Beck’s triad,
1. Hypotension
2. Elevated JVP
3. Silent heart
 - Elevated CVP may be absent with hypovolaemia.
 - Distended neck veins may be obscured by a cervical collar.
 - Initial IV resuscitation will elevate CVP and improve CO initially.

 Kussmaul’s sign, a rise in CVP with inspiration, is a true paradoxical venous pressure abnormality associated with tamponade.

NB: All patients having a positive pericardiocentesis require a thoracotomy.

(192)
Appendix

CHEST TRAUMA - DELAYED MAJOR INJURIES
1. Pulmonary contusion - without flail chest
2. Myocardial contusion - arrhythmias
3. Aortic rupture/haemorrhage
4. Ruptured diaphragm - respiratory failure
5. Ruptured bronchus - bronchopleural fistula - pneumothorax
6. Ruptured oesophagus - mediastinitis

PULMONARY CONTUSION
• Most common potentially lethal chest injury seen.
• May be managed with or without intubation, but require observation due to progression over the first 24-48 hrs.

MYOCARDIAL CONTUSION
• Incidence ~ 65 percent of major blunt chest trauma
• Site affected, a. RV ~ 65 percent b. LV ~ 15 percent c. both ~ 20 percent
• Clinical presentation
 a. Unexplained hypotension
 b. Unexplained elevation of CVP/JVP
 c. Acute cardiac failure
 d. Arrhythmias
Emergency Imaging

e. New murmur - VSD, MV rupture
f. Tamponade

TRAUMATIC AORTIC RUPTURE

Most common major vessel injured following blunt chest trauma common cause of immediate death in MVA, ~ 90 percent fatal at the scene of accident.

Diagnosis

1. CXR may be essentially *normal*
 - No single finding reliably predicts or excludes significant injury
 i. Widening of the superior mediastinum
 ii. Fractures of the 1st and 2nd ribs
 iii. Blurring of the left margin of the aortic knuckle
 iv. Tracheal shift → right
 v. Left pleural cap effusion
 vi. Elevation and right-shift of the RMB
 vii. Depression of the LMB
 viii. Obliteration of the space between PA and aorta
 ix. Oesophageal deviation (NGT).
NB: High index of suspicion in the patient with major abdominal injuries, modes of presentation,
i. Acute respiratory failure
ii. Bowel sounds in left hemithorax
iii. Peritoneal lavage fluid “disappears”, or drains from chest tube
iv. Bowel/NGT in hemithorax on CXR
v. Failure to wean from mechanical ventilation

CXR
a. Loops of bowel in left hemithorax
b. “pseudo-haemopneumothorax” = air/fluid level of stomach
c. Persistent elevated left hemidiaphragm
d. NG tube in left hemithorax

NB: May be mimicked by (misinterpreted as),
i. Elevated left hemidiaphragm
ii. Acute gastric dilatation
iii. Loculated pneumothorax
iv. Subpulmonic haematoma
Emergency Imaging

TRACHEOBRONCHIAL TREE INJURIES

Laryngeal Injury
a. History of injury
b. May be minimal external tissue damage
c. Hoarseness
d. Subcutaneous emphysema
e. Crepitus

Bronchial Rupture
a. Sites
 i. Lower trachea ~ 80 percent transverse
 ii. Major bronchus - spiral
 iii. Post. tracheal wall - vertical

Oesophageal Rupture
Clinical presentation,
a. Penetrating, most common, or severe closed chest trauma
b. Retrosternal pain
c. Dysphagia
d. Haematemesis
e. Cervical emphysema
Appendix

f. CXR: - left pleural effusion, haemothorax
 - widened mediastinum
 - mediastinal emphysema, air/fluid level
 - cervical emphysema
 - hydropneumothorax/pneumothorax

g. Pleural aspirate - pH < 6.0
 - bloody fluid, high WCC
 - high amylase

COMA: CAUSES OF RESPIRATORY FAILURE

a. Airway obstruction
b. Aspiration
c. Acute neurogenic pulmonary oedema
d. Post-obstructive pulmonary oedema
e. Thoracic injuries
 i. Tracheobronchial disruption
 ii. Pulmonary contusion
 iii. Haemothorax/pneumothorax
 iv. Flail chest
 v. Diaphragmatic disruption
f. Acute gastric dilatation
g. Cervical cord trauma
h. Central hypoventilation

(197)
Emergency Imaging

ABDOMINAL TRAUMA
Peritoneal Lavage
a. Sensitivity ~ 95-98 percent
b. Specificity ~ 85 percent
c. Positive result
 - Renal injury

Indications
a. Multiple trauma patient in whom abdominal examination is,
 i. Equivocal
 ii. Unreliable - CHI, intoxication, cord injury
 iii. Impractical - prolonged X-Rays, angiography
 - Requiring GA
b. Unexplained fluid requirements in resuscitation
c. Penetrating injuries - including lower thoracic
d. Gunshot wounds

Contraindications
a. Full bladder
b. Pregnancy
c. Recent abdominal surgery
d. Obvious signs of intraperitoneal haemorrhage/infection
Appendix

NB: The only absolute contraindication is an existing indication for laparotomy.

Complications
a. Haemorrhage
b. Intestinal perforation
c. Bladder perforation
d. Infection

Peritoneal Lavage - Technique
a. Empty bladder, sterile technique, IV access
b. Dialysis catheter introduced into pelvis via sub-umbilical incision
c. Aspiration for frank blood
d. 1000 ml of normal saline introduced over 5 minutes + ballotment
e. Fluid drained sent for,
 i. red and white blood cell counts
 ii. urgent gram stain and culture
 iii. amylase
 iv. ? cytology
Emergency Imaging

ABDOMINAL CT SCANNING

- Suggested as a substitute for DPL in haemodynamically stable patients.
- Criticism of DPL is indication for laparotomy in cases of minor liver laceration.

GENITOURINARY TRACT

Blunt Trauma

Increased incidence of injury with,

a. Renal
 i. Back/flank haematomas, ecchymoses
 ii. Fractures of lower ribs
 iii. Fractures of spinal transverse processes

b. Bladder/urethra
 i. Perineal haematomas
 ii. Anterior pelvic fractures

c. Overt signs of lower tract injury
 i. Blood at the urethral meatus
 ii. Inability to void

- Urethral disruptions are divided into:
 a. Posterior - above the urogenital diaphragm
 - Usually multisystem trauma, pelvic fractures
 b. Anterior - below the urogenital diaphragm
 - Usually staddle injuries and isolated

(200)
Appendix

- Imaging techniques
 1. IVP
 - Unilateral non-function - congenital absence, previous nephrectomy
 - Massive parenchymal shattering
 - Vascular pedical disruption
 2. Urethrography
 - Should be performed prior to CUD in all suspected urethral tears
 3. Cystography
 4. CT scan

Pelvic Fractures

- Open pelvic fractures → \textit{mortality} > 50\% percent
- Rectal and genital injuries should be suspected in all major fractures
- DPL should be performed, preferably from \textit{above} the umbilicus, due to extension of haematoma
 a. Negative DPL - reliably excludes major intraperitoneal bleeding
 b. Positive DPL ~ 15 percent FP, due to leaking into the peritoneum
- A MAST suit may be used if there is haemodynamic instability

(201)
Emergency Imaging

- Continued bleeding then become a therapeutic dilemma,
 a. If DPL is grossly positive, then laparotomy indicated to exclude co-existent abdominal pathology
 b. Arteriography/embolization may be life-saving for uncontrolled haemorrhage.

HEAD TRAUMA

Head injury is associated with,
- ~ 50 percent of all trauma deaths
- ~ 60 percent of MVA deaths

Def'n: coma is defined as,
1. No eye opening = 1
2. Not obeying command = 1-5
3. No word verbalisation = 1-2
 • Virtually all patients with GCS < 8 and
 • Most with GCS = 8 are comatose

Def'n: head injury is arbitrarily divided according to GCS as,
1. Severe HI GCS < 9
2. Moderate HI GCS = 9-12
3. Minor HI GCS > 12
Appendix

Other factors considered as severe HI, despite GCS,

a. Unequal pupils > 1 mm difference
b. Unequal motor response
c. Open HI - CSF leak, exposed brain tissue
d. Neurological deterioration
e. Depressed skull fracture
 • A change in GCS ≥ 2 represents clear deterioration, ≥ 3
 major deterioration requiring immediate
 • Assessment and therapy
 • Other factors of concern,
 a. Increased severity, or unusually severe headache
 b. Unilateral increase in pupil size
 c. Unilateral onset of weakness

Imaging Techniques

a. CT scan
 • Examination of first choice in all but trivial injuries
b. SXR
 • Limited value in early management, except in
 penetrating injuries
c. Examination with limited/no role in acute head injury
 i. LP
 ii. EEG
 iii. Isotope scanning
Emergency Imaging

Skull Fractures
a. Linear, non-depressed
 Across vascular arterial grooves or suture lines increases the risk of *extradural haematoma*
b. Depressed
 Increased risk of sequelae (e.g., seizures) in depressed > thickness of skull
c. Open
 Early operative intervention, elevation and removal of fragments and closure of the dura
d. Basal skull fractures
 Internally compound, and loss of CSF may be occult into sinuses
 Factors suggestive of diagnosis,
 i. Battle’s sign - mastoid ecchymoses
 ii. Raccoon eyes - bilateral periorbital ecchymoses
 - associated with cribiform plate fracture
 iii. CSF leak - rhinorrhea, otorrhoea
 iv. Haemotympanum

Diffuse Brain Injury
a. *Concussion*
 • Is a brain injury accompanied by brief loss of neurological function
Appendix

- Various neurological abnormalities may be described, however, these have usually resolve by the time a tertiary institution is reached
- Any neurological abnormality observed in a patient should not be attributed to concussion
- Rule of thumb is that if the patient has been unconscious for > 5 minutes then they should be observed for 24 hrs

b. Diffuse axonal injury
- Characterised by prolonged coma, lasting days to weeks
- Overall mortality ~ 30 percent
- Autonomic dysfunction, fever, hypertension, sweating, etc is common.

Focal Injuries
a. Contusions
b. Haemorrhages
c. Haematomas

Meningeal Haemorrhage
1. Extradural haemorrhage
 - Most commonly middle meningeal artery, rarely dural sinus
 - Usually 2° linear fracture of parietal/temporal bones
 - Relatively rare ~ 0.5 percent of unselected HI
Emergency Imaging

2. Subdural haemorrhage
 • Much more common than extradural ~ 30 percent of severe HI
 • Most commonly rupture of bridging veins, less often cortical arteries or brain
 • Underlying primary brain injury is often severe
 • Poor prognosis → mortality ~ 60 percent
 • Recent studies suggest some improvement of outcome with early evacuation

3. Subarachnoid haemorrhage
 • Blood in CSF → meningeal irritation, headache, photophobia, etc.
 • LP not required → CT scan

Parenchymal Haemorrhage

1. Intracerebral haematomas
2. Impalement injuries

SPINAL TRAUMA

Demographics

a. Age ~ 70-80 percent are between 11-30 yrs
b. Sex ~ 2/3 are males
Appendix

c. **Mortality** ~ 30 percent die before reaching hospital
 1. Flaccid areflexia
 2. Flaccid rectal sphincter
 3. Ability to flex, but *not extend* the elbow
 4. Grimaces to pain above, but not below the clavicle
 5. Hypotension with bradycardia and dilated veins
 6. Priapism

Vertebral Assessment
a. Usually associated with pain and tenderness
b. Less often palpable step-deformity
c. Oedema/ecchymoses
d. Tracheal tenderness/deviation - retropharyngeal haematoma
e. Muscle spasm ± head tilt

Neurological Assessment
a. Motor power
b. Tone
c. Reflexes
d. Sensory deficit
 * Light touch is conveyed in both lateral and posterior columns and may be the only modality preserved in incomplete injuries.
Emergency Imaging

- Sparing of sensation in the *sacral dermatomes* may be the only sign of incomplete injury.
- Evaluation of sacral sparing should include sensory perception and voluntary contraction of the anus.
 e. Autonomic dysfunction - bladder/rectal control, priapism.

Neurogenic and Spinal Shock

1. *Neurogenic shock*
 - Hypotension associated with high thoracic and cervical injuries
 - Hypotension, bradycardia and dilated veins → “relative hypovolaemia”
 - Atropine may be used to Rx bradycardia.

2. *Spinal shock*
 - Refers to neurological function of the spinal cord following injury
 - “Shock” may result in almost total non-function despite viability of the cord
 - Produces flaccid paralysis, cf. normal spasticity, brisk reflexes and ↑ plantars.
Appendix

Fractures/Dislocations

1. **C1 Atlas**
 - Usually involves a blow-out of the ring → *Jefferson* fracture associated with axial load
 - 30 percent have associated C2 fracture
 - Usually *not* associated with cord injury
 - They are unstable and require immediate immobilization.

2. **C2 Axis**
 i. **Dislocation**
 - Odontoid may be displaced posteriorly into the spinal canal
 - Injury to the transverse ligament, between odontoid and anterior arch of C1
 - Consider whenever C1-arch to odontoid distance > 5 mm
 - Displacement can occur without injury → Steel’s rule:
 - “1/3 of the area in the atlas is occupied by odontoid, 1/3 by spinal cord”.
 ii. **Odontoid fractures**
 - *Type I*: above the base and stable
 - *Type II*: through the base and usually unstable
 - *Type III*: extends into the vertebral body
 - **NB**: In children under 6 yrs the epiphysis may appear as a fracture line cf. type II fractures.

(209)
iii. Posterior element fractures → "hangman’s fracture"
 - Posterior elements damaged by flexion and distraction unstable.
3. C3-C7
 - Assess distance from anterior aspect of C3 to pharyngeal shadow → prevertebral thickness < 5 mm
 - Increased thickness “without” fracture classically seen with minimally displaced C2 fracture
 - “Rule-of-thumb” for prevertebral haematoma is the distance to the air-shadow should be < ½ the vertebral body thickness
 - Radiological evidence identifying an unstable fracture,
 i. Disruption of all of either anterior or posterior elements
 ii. Over-riding of a superior vertebral body > 3.5 mm
 iii. Angulation between vertebral bodies > 11°
4. Facet dislocations
 - Unilateral facet injury → vertebral displacement ~25 percent of body width
 - Bilateral facet injury → vertebral displacement > 50 percent of body width
 - Malalignment of spinous processes on AP film
 - Bilateral dislocations frequently unstable.
Appendix

PAEDIATRIC TRAUMA

- Ratio of blunt:penetrating trauma highest for paediatric group
- MVA’s and falls account for ~ 80 percent of trauma
- *Multisystem* injury is the rule, rather than the exception.

Unique Characteristics

1. Smaller size - greater force per unit area
2. Skeletal immaturity
 - Soft bones with active growth centres can absorb large amount of energy without fracture
 - Higher incidence of internal organ damage without overlying fracture
 - Includes spinal column → SCIWORA
 - Open sutures < 18 months
3. Surface area
 - Thermal energy loss higher
 - Absorption of toxins higher
 - Systemic effects of burns greater
4. GCS modified for age
5. Higher incidence of:
 i. Seizure activity
 ii. Mass lesions
 iii. White matter tears - frontal and temporal lobes
 - especially infants < 6 months
 iv. Subdural haematomas - especially NAI

(211)
Emergency Imaging

6. Major blood loss with hypotension may be concealed
7. IV access often more difficult
8. Acute gastric distension → NG tube
9. Psychological immaturity
10. Long-term effects
 • Growth and deformity
11. Equipment
 • Specific equipment required → size for age not small adults.

Chest Trauma

a. Majority blunt
b. Underlying pulmonary contusion/haemorrhage most common significant injury
c. Tension pneumothorax/haemothorax are less common cf adults, but may be rapidly lethal if unrecognised
d. Injuries relatively rare in paediatric group,
 i. Fractures ribs
 ii. Diaphragmatic rupture
 iii. Injury to great vessels

Abdominal Trauma

NB: All should have stomach decompressed by oro/nasogastric tube.

(212)
Appendix

a. High incidence of visceral injury
b. More difficult to assess cf adults
c. Limited role for DPL \rightarrow CT scan
 - CT must be immediately available
 - not delay diagnostic algorithm
 - suit must have resuscitation facility
d. Majority of solid visceral injuries are managed conservatively but require adequate observation
e. Indications for operating on spleen/liver trauma,
 i. Failure to respond to resuscitation
 ii. Continued major haemorrhage > 40 ml/kg/24 hrs
 iii. Suspicion of associated hollow visceral injury
 iv. Severe concomitant HI, where haemodynamic instability is deleterious
f. Many liver/spleen injuries can be repaired, rarely perform splenectomy.

Extremity Trauma

a. Presence of growth plates makes assessment difficult. X-ray of the opposite limb often useful.
b. Blood-loss associated with long-bone and pelvic fractures is proportionately more significant.
c. Physeal fractures classified by Salter-Harris
 i. Type I - linear through growth plate
 ii. Type II - cf. type I, plus small chip of metaphysis
iii. Type III - through growth plate and epiphysis
iv. Type IV - through both metaphysis and epiphysis
v. Type V - compression fractures
 • Types I and II have best prognosis for normal growth.
 • Type V has worst prognosis and difficult to spot on X-ray.

d. Greenstick fracture - fracture of cortex only
 - most require reduction
e. Buckle fracture - angulation without cortical fracture
f. Supracondylar fracture
 • High propensity for neurovascular injury
 • High incidence of growth deformity.

Head Trauma

a. Children < 3 years have worse outcomes following severe HI
 • Cf. older children who generally recover better than adults
b. Small children may develop hypovolaemic shock 2° head injury alone, or associated scalp laceration
c. Children < 18 months with open sutures have increased tolerance of expanding intracranial masses. Check for fontanelle bulging and suture diastasis
Appendix

d. Vomiting is a common response to injury and may, or may not, equal raised ICP

e. Seizures occurring shortly after injury are usually self-limiting; recurrent seizures require Ix and Rx

f. Focal lesions are less common

g. Generalised oedema and raised ICP is more common

h. GCS, verbal score modified for age,
 i. Appropriate words
 • Social smile
 • Fixes and follows = 5
 ii. Cries but consolable = 4
 iii. Persistently irritable = 3
 iv. Restless, agitated = 2
 v. None = 1

i. Indications for ICP monitoring in children
 i. GCS < 5, or motor scores < 3
 ii. Where raised ICP is known, or likely to develop, and signs are masked by neuromuscular paralysis
 iii. Multiple associated injuries, where CT scanning delayed.

ICP monitoring/management does not improve outcome in global ischaemic events near-drowning victims with ↑ ICP/↓ CPP have poor prognosis, and maintenance of ‘normal’ ICP does not correlate with outcome.
j. Child drug doses
 i. Diazepam ~ 0.25 mg/kg
 ii. Phenytoin ~ 15-20 mg/kg
 iii. Mannitol ~ 0.5-1.0 g/kg

Spinal Trauma

Paediatric spinal trauma is relatively rare → ~ 5 percent of all spinal injuries of children with severe trauma ~ 5 percent will have a cervical spine injury. Injuries will occur at more than one spinal level in ~ 16 percent of cases the commonest causes are:

a. Road trauma - MVA, pedestrian, cyclist
b. Falls - especially diving

Anatomical differences include:
 a. Interspinous ligaments and joint capsules are more flexible
 b. Uncinate articulations are poorly developed and slide forward
 c. The facet joints are flat
d. The vertebral bodies are wedged anteriorly and slide forward with flexion
e. The head is relatively large
Appendix

→ greater angular momentum can be generated with flexion/extension normal radiological variations include:
 a. Anterior displacement of C2 on C3 →
 i. ~ 40 percent of children < 7 yrs
 ii. ~ 20 percent of children ≤ 16 yrs
 iii. ± ≥ 3 mm movement on flexion/extension
 b. Increased distance between the dens and anterior arch of C1 ~ 20 percent of children
 c. Skeletal growth centres may resemble fractures
 d. Basilar odontoid synchondrosis appears as a radiolucent line at the base of the dens (especially ≤ 5 years). Spinal cord injury without radiographic abnormality, SCIWORA is almost unique to the paediatric age group
 • ~ 20-60 percent of all SCI
 • ~ 30-50 percent of these the lesion is complete
SCI in the first decade of life is,
 a. Almost exclusively at C1/2
 b. Either subluxation or SCIWORA and severe cord injury
 c. Rarely associated with fractures
 A high proportion of children who die in MVA’s, or suffer cardiorespiratory arrest prior to reaching hospital have cord trauma above C3, particularly at the cervico-medullary junction. This is difficult to diagnose in the unconscious patient, signs including:

(217)
a. Flaccid immobility and areflexia
b. Hypoventilation with paradoxical chest movement
c. Apnoea and rhythmic flaring of the alae nasi (above C3)
d. Hypotension with - inappropriate bradycardia
 • – peripheral vasodilatation
 • ± priapism

Spinal Shock

The syndrome of spinal shock occurs more commonly in children,
a. SCI lesion resolves after 2-3 days
b. Progressive return of reflexes - bulbocavernous and anal first
c. Incomplete lesions may then become apparent
 i. Brown-Sequard hemisection
 ii. Anterior cord lesion
 iii. Central cord lesion
d. Physical
e. Sexual and emotional abuse
f. Deprivation of medical care and nutrition. Children are also intentionally poisoned, and endure the consequences of inadequate supervision. Diagnosis of children who suffer from abuse or neglect is difficult.
Appendix

NAI should be suspected where:
a. An injury is unexplained
b. The history is not consistent with the type of injury
c. It is alleged that the injury was self-inflicted
d. Relatives delay in seeking medical aid
e. There are repeated suspicious injuries
 • The history is rarely volunteered by the child
 • The pattern of physical findings can be helpful
a. Head injury - skull fractures
 - subdural haematomas
b. Retinal haemorrhages occur with head shaking, but also
 have other causes
c. Bruises and scars on the back and buttocks in different
 stages of development and of unusual shapes
d. Burns from cigarettes or forced immersion in hot water
e. Overt bone fractures or healing fractures
f. Long-bone fractures in children < 3 years
g. Injury to genital or perianal areas.

When non-accidental injury is suspected, referral to a
specialised child protection unit to enable appropriate
counselling and intervention is helpful. Safety of siblings
must be considered.
Index

A
Abdominal CT scanning 200
Abdominal trauma 198
 complications 199
 contraindication 198
 indications 198
Abscess 25
Acalculus cholecystitis 66
Acute pancreatitis 82
Acute pyelonephritis 64
Acute SDH 6
Aneurysm 16
Aortic dissection 49
ARDS due to toxic gas inhalation 52
Articular fracture of distal femur 124
Articular fracture with hemarthrosis 124

B
Basilar artery occlusion 32
Blow out fractures 138
Brachial plexus injury 118
Burst fracture 109

C
Calculus cholecystitis 67
Cardiac tamponade 192
Carotico cavernous fistula 15
Cerebral venous sinus thrombosis 23
Cervical spine evaluation 100
Chest trauma 190
 acute life-threatening injuries 190
 delayed major injuries 193
 diaphragmatic rupture 195
 myocardial contusion 193
 pulmonary contusion 193
 traumatic aortic rupture 194
 indications for intercostal tube drainage 191
Choledocholithiasis with liver abscess 69
Chronic SDH 5
Closed loop small-bowel obstruction 76
<table>
<thead>
<tr>
<th>Emergency Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colloid cyst 26</td>
</tr>
<tr>
<td>Columnar structure of spine 110</td>
</tr>
<tr>
<td>Coma 197</td>
</tr>
<tr>
<td>causes of respiratory failure 197</td>
</tr>
<tr>
<td>Complex acetabular fractures 121</td>
</tr>
<tr>
<td>Consolidation 51</td>
</tr>
<tr>
<td>Contusion 7</td>
</tr>
<tr>
<td>Coronary CT angiogram 179</td>
</tr>
<tr>
<td>Cranial fractures 13</td>
</tr>
<tr>
<td>Crescent sign of aortic aneurysm rupture 89</td>
</tr>
<tr>
<td>CT angiogram of 182</td>
</tr>
<tr>
<td>bronchial arteries 182</td>
</tr>
<tr>
<td>circle of Willis 170</td>
</tr>
<tr>
<td>extremities 174</td>
</tr>
<tr>
<td>mesenteric vessels 183</td>
</tr>
<tr>
<td>neck vessels 169</td>
</tr>
<tr>
<td>SVC obstruction 178</td>
</tr>
<tr>
<td>CT angiography 162</td>
</tr>
<tr>
<td>CT aortogram 172</td>
</tr>
<tr>
<td>CT perfusion in ischemic stroke 162</td>
</tr>
<tr>
<td>CT renal angiogram 177</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>Dense MCA sign 29</td>
</tr>
<tr>
<td>Diaphragmatic injury 43</td>
</tr>
<tr>
<td>Diffuse axonal injury 8</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>Elbow 150</td>
</tr>
<tr>
<td>Emphysematous pyelonephritis 63</td>
</tr>
<tr>
<td>Epidural hematoma 114</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>Facial fractures 133</td>
</tr>
<tr>
<td>Flail chest 192</td>
</tr>
<tr>
<td>Flexion and extension studies 119</td>
</tr>
<tr>
<td>Flexion injury 117</td>
</tr>
<tr>
<td>Fracture around the wrist 130</td>
</tr>
<tr>
<td>Fracture of carpal bones 131</td>
</tr>
<tr>
<td>Fractures around the elbow 128</td>
</tr>
<tr>
<td>Fractures of hip 120</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>Genitourinary tract 200</td>
</tr>
<tr>
<td>blunt trauma 200</td>
</tr>
<tr>
<td>pelvic fractures 201</td>
</tr>
<tr>
<td>GIST tumors with hemorrhage 57</td>
</tr>
</tbody>
</table>
Index

H
Head trauma 202
 diffuse brain injury 204
 focal injuries 205
 imaging techniques 203
 meningeal haemorrhage 205
 skull fractures 204
Henoch-Schönlein syndrome 78
Hyperacute EDH 3

I
Injury to aorta 44
Intracerebral bleed 18
Irreducible hernia with subacute bowel obstruction 58

K
Knee 154

L
Laceration 94
Left MCA proximal occlusion 31
Liver abscess 85
Liver hematoma 93
Lung contusion 40

M
Massive haemothorax 191
Maxillofacial injuries 134
 signs of facial fractures 134
 direct signs 134
 indirect signs 134
Mechanism of spinal injury 111
Medulloblastoma 27
Mesenteric vein gas 77
Musculoskeletal trauma 98

N
Non-occlusive mesenteric ischemia 62
Non-traumatic abdominal emergencies 55

O
Odontoid fracture 106, 116

P
Paediatric trauma 211
 abdominal trauma 212
 chest trauma 212
 extremity trauma 213
 head trauma 214

(223)
spinal shock 218
spinal trauma 216
Pancreatic abscess 84
Pancreatic laceration 97
Pelvis and hip 152
Penetrating atheromatous ulcer 46
Peutz-Jeghers syndrome 73
Pneumocephalus 10
Pneumomediastinum 39
Pneumoperitoneum 60
Pneumothorax 36
Pneumothorax with pulmonary contusion 38
Posterior reversible encephalopathy 28
Post-traumatic ARDS 42
Post-traumatic infarct 11
Progression of an infarct 30
Proximal humeral fractures 125
Pseudoaneurysm of SMA 81
Pulmonary edema 53
Pulmonary embolism 47
Pulmonary laceration 41
Rasmussens aneurysm 48
Rectus sheath hematoma 71
Renal abscess 65
Renal calculi 92
Renal laceration 96
Reversal sign–sign of hypoxia 14
Right parietal wall abscess 72
Sacroiliac diastasis 132
Small bowel obstruction 79
Small bowel perforation 86
SMV thrombosis 75
Soft tissue spaces 101
Spinal trauma 206
demographics 206
fractures/dislocations 209
neurogenic and spinal shock 208
neurological assessment 207
vertebral assessment 207
Splenic infarction 88
Splenic laceration with contusion 95
Spontaneous psoas bleed 90
Straight sinus thrombosis 24
Target sign 70, 74
Tibial plateau fractures 123
Tracheobronchial tree injuries 196
Index

bronchial rupture 196
laryngeal injury 196
oesophageal rupture 196
Trauma pearls 185
 initial survey 185
 primary 185
 secondary 188
Traumatic brain injuries 1
Traumatic listhesis 107
Traumatic listhesis with transection of cord 111

V
Volvulus 59

W
Wandering spleen with infarction 87
Whip lash injury 113
Whorl sign of volvulus 61
Wrist 148